Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Appl Fluoresc ; 12(3)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537290

RESUMO

Polycationic photosensitizers (PS) are not susceptible to aggregation in solutions, but their high local concentrations in Gram-negative bacteria can be sufficient for aggregation and reduced effectiveness of antibacterial photodynamic treatment. By measuring fluorescence spectra and kinetics we were able to evaluate the degree of aggregation of polycationic PS ZnPcChol8in Gram-negative bacteria E.coliK12 TG1. Binding of ZnPcChol8toE.coliK12 TG1 leads to an appearance of groups of molecules with shorter PS fluorescence lifetime, a decrease in fluorescence intensity and a shift in the fluorescence spectral maximum. However, we evaluated that about 88% of the fluorescing PS molecules in the bacteria were in an unaggregated state, which indicates only a small reduction in the generation of reactive oxygen species.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Polieletrólitos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Bactérias Gram-Negativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Photosynth Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466457

RESUMO

The widespread use of disinfectants and antiseptics, and consequently their release into the environment, determines the relevance of studying their potential impact on the main producers of organic matter on the planet-photosynthetic organisms. The review examines the effects of some biguanides and quaternary ammonium compounds, octenidine, miramistin, chlorhexidine, and picloxidine, on the functioning of the photosynthetic apparatus of various organisms (Strakhovskaya et al. in Photosynth Res 147:197-209, 2021; Knox et al. in Photosynth Res 153:103, 2022; Paschenko et al. in Photosynth Res 155:93-105, 2023a, Photosynth Res 2023b). A common feature of these antiseptics is the combination of hydrophobic and hydrophilic regions in the molecules, the latter carrying a positive charge(s). The comparison of the results obtained with intact bacterial membrane vesicles (chromatophores) and purified pigment-protein complexes (photosystem II and I) of oxygenic organisms allows us to draw conclusions about the mechanisms of the cationic antiseptic action on the functional properties of the components of the photosynthetic apparatus.

3.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958892

RESUMO

Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood. Here, we use Brownian dynamics to identify methylene blue binding sites on the SARS-CoV-2 envelope. The local lipid and protein composition of the coronavirus envelope plays a crucial role in the binding of this cationic dye. Viral structures targeted by methylene blue include the S and E proteins and negatively charged lipids. We compare the obtained results with known experimental data on the antiviral effects of methylene blue to elucidate the molecular basis of its activity against coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Azul de Metileno/farmacologia , Sítios de Ligação , Antivirais/farmacologia
4.
Photodiagnosis Photodyn Ther ; 44: 103853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863377

RESUMO

BACKGROUND: The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS: Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS: The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS: PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Bactérias Gram-Negativas , Biofilmes/efeitos da radiação
5.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838917

RESUMO

In this article, we used molecular dynamics (MD), one of the most common methods for simulations of membranes, to study the interaction of fluorescent membranotropic biological probe 10-N-nonyl acridine orange (NAO) with the bilayer, mimicking a plasma membrane of Gram-negative bacteria. Fluorescent probes serve as an effective tool to study the localization of different components in biological membranes. Revealing the molecular details of their interaction with membrane phospholipids is important both for the interpretation of experimental results and future design of lipid-specific stains. By means of coarse-grained (CG) MD, we studied the interactions of NAO with a model membrane, imitating the plasma membrane of Gram-negative bacteria. In our simulations, we detected different NAO forms: monomers, dimers, and stacks. NAO dimers had the central cardiolipin (CL) molecule in a sandwich-like structure. The stacks were formed by NAO molecules interlayered with anionic lipids, predominantly CL. Use of the CG approach allowed to confirm the ability of NAO to bind to both major negatively charged phospholipids, phosphatidylglycerol (PG) and CL, and to shed light on the exact structure of previously proposed NAO-lipid complexes. Thus, CG modeling can be useful for the development of new effective and highly specific molecular probes.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Cardiolipinas/análise , Cardiolipinas/química , Cardiolipinas/metabolismo , Corantes Fluorescentes/química , Laranja de Acridina/química , Fosfatidilgliceróis , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Bactérias/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806316

RESUMO

Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed by D. Korkin and S.-J. Marrink's scientific groups, we created an electrostatic map of the external surface of SARS-CoV-2 and found a highly heterogeneous distribution of the electrostatic potential field of the viral envelope. Numerous negative patches originate mainly from negatively charged lipid domains in the viral membrane and negatively charged areas on the "stalks" of the spike (S) proteins. Membrane (M) and envelope (E) proteins with the total positive charge tend to colocalize with the negatively charged lipids. In the E protein pentamer exposed to the outer surface, negatively charged glutamate residues and surrounding lipids form a negative electrostatic potential ring around the channel entrance. We simulated the interaction of the antiviral octacationic photosensitizer octakis(cholinyl)zinc phthalocyanine with the surface structures of the entire model virion using the Brownian dynamics computational method implemented in ProKSim software (version r661). All mentioned negatively charged envelope components attracted the photosensitizer molecules and are thus potential targets for reactive oxygen generated in photosensitized reactions.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/química , Sítios de Ligação , Cátions , Humanos , Lipídeos , Fármacos Fotossensibilizantes/química , Eletricidade Estática , Vírion
7.
Viruses ; 14(5)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632792

RESUMO

Bovine coronaviruses (BCoVs), which cause gastrointestinal and respiratory diseases in cattle, and are genetically related to the human coronavirus HCoV-OC43, which is responsible for up to 10% of common colds, attract increased attention. We applied the method of photodynamic inactivation with cationic photosensitizers (PSs) to reduce the titers of BCoV and studied the morphological structure of viral particles under various modes of photodynamic exposure. The samples of virus containing liquid with an initial virus titer of 5 Log10 TCID50/mL were incubated with methylene blue (MB) or octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) at concentrations of 1-5 µM for 10 min in the dark at room temperature. After incubation, samples were irradiated with LED (emission with maximum at 663 nm for MB or at 686 nm for Zn-PcChol8+) with light doses of 1.5 or 4 J/cm2. Next, the irradiation titrated virus containing liquid was studied using negative staining transmission electron microscopy. MB and Zn-PcChol8+ at concentrations of 1-5 µM, in combination with red light from LED sources in the low doses of 1.5-4.0 J/cm2, led to a decrease in BCoV titers by at least four orders of magnitude from the initial titer 5 Log10 TCID50/mL. Morphological changes in photodamaged BCoVs with increasing PS concentrations were loss of spikes, change in shape, decreased size of virus particles, destruction of the envelope, and complete disintegration of viruses. BCoV has been found to be sensitive to MB, which is the well-known approved drug, even in the absence of light.


Assuntos
Coronavirus Humano OC43 , Coronavirus Bovino , Animais , Cátions , Bovinos , Azul de Metileno , Fármacos Fotossensibilizantes/farmacologia , Vírion
8.
Photosynth Res ; 153(1-2): 103-112, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35277801

RESUMO

Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).


Assuntos
Anti-Infecciosos Locais , Cromatóforos , Complexo de Proteínas do Centro de Reação Fotossintética , Rhodospirillum rubrum , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Compostos de Benzalcônio , Clorexidina/metabolismo , Cromatóforos/metabolismo , Fluorescência , Iminas , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Piridinas , Rhodospirillum rubrum/metabolismo
9.
Viruses ; 13(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34452480

RESUMO

We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in "open" and "closed" conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the "open" state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.


Assuntos
Colina/metabolismo , Indóis/metabolismo , Isoindóis/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Compostos Organometálicos/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Zinco/metabolismo , Sítios de Ligação , Indóis/química , Azul de Metileno/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Compostos Organometálicos/química , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Eletricidade Estática
10.
Viruses ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918615

RESUMO

Photodynamic inactivation of pathogenic microorganisms can be successfully used to eradicate pathogens in localized lesions, infected liquid media, and on various surfaces. This technique utilizes the photosensitizer (PS), light, and molecular oxygen to produce reactive oxygen species that kill pathogens. Here, we used the PS, water soluble octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+), to inactivate an initial 4.75-5.00 IgTCID50/mL titer of SARS-CoV-2, thereby preventing viral infection when tested in Vero E6 cell cultures. Zn-PcChol8+ in a minimally studied concentration, 1 µM and LED 3.75 J/cm2, completely destroyed the infectivity of SARS-CoV-2. To detect possible PS binding sites on the envelope of SARS-CoV-2, we analyzed electrostatic potential and simulated binding of Zn-PcChol8+ to the spike protein of this coronavirus by means of Brownian dynamics software, ProKSim (Protein Kinetics Simulator). Most of the Zn-PcChol8+ molecules formed clusters at the upper half of the stalk within a vast area of negative electrostatic potential. Positioning of the PS on the surface of the spike protein at a distance of no more than 10 nm from the viral membrane may be favorable for the oxidative damage. The high sensitivity of SARS-CoV-2 to photodynamic inactivation by Zn-PcChol8+ is discussed with respect to the application of this PS to control the spread of COVID-19.


Assuntos
Indóis/farmacologia , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Inativação de Vírus/efeitos dos fármacos , Animais , COVID-19/prevenção & controle , Chlorocebus aethiops , Indóis/química , Isoindóis , Luz , Simulação de Dinâmica Molecular , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Células Vero , Compostos de Zinco
11.
Photosynth Res ; 147(2): 197-209, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389445

RESUMO

Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 µM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 µM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.


Assuntos
Anti-Infecciosos Locais/farmacologia , Cromatóforos Bacterianos/efeitos dos fármacos , Transferência de Energia/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Rhodobacter sphaeroides/fisiologia , Cardiolipinas/química , Membrana Celular/efeitos dos fármacos , Cinética , Luz , Complexos de Proteínas Captadores de Luz/efeitos dos fármacos , Fosfatidilgliceróis/química , Fotossíntese/efeitos dos fármacos , Rhodobacter sphaeroides/química , Espectrometria de Fluorescência
12.
Int J Ophthalmol ; 13(1): 85-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31956575

RESUMO

AIM: To study antibiotic resistance patterns and susceptibility to eye antiseptic picloxydine of conjunctival flora in patients undergoing intravitreal injections (IVIs). METHODS: Conjunctival swabs were taken in 4 groups of patients, 20 patients in each group (n=80): without IVIs and ophthalmic operations in history (group N1; control group); with the first IVI and antibiotic eye drops Tobrex applied 3d before IVI and 5d after it (group N2); with 20 or more IVIs and repeated courses of antibiotic eye drops (group N3); with the first IVI and antiseptic eye drops Vitabact (picloxydine) applied 3d before IVI and 5d after it (group N4). In groups N2 and N4 swabs were taken at baseline and after the treatment. Efficacy of picloxydine in inhibition of growth of conjunctival isolates susceptible and resistant to antibiotic was studied in vitro. Minimal inhibition concentrations (MIC) were determined with microdilution test. RESULTS: Two of the three patients who had to undergo the IVI procedure showed conjunctiva bacterial contamination. Along with few Staphylococcus aureus and Gram-negative isolates susceptible to most antibiotics, the majority (71%-77%) of causative agents were coagulase-negative Staphylococci (CoNS), 40%-50% of which were multidrug resistant (MDR). Eye disinfection in the operating room and peri-injection courses of Tobrex or Vitabact resulted in total elimination of isolates found at baseline. However, in 10% and 20% of patients, respectively, recolonization of the conjunctiva with differing strains occurred. In patients with repeated IVI and Tobrex/Maxitrol treatment, the conjunctival flora showed high resistance rates: 90% of CoNS were MDR. In the in vitro study, picloxydine showed bactericidal effect against Staphylococci isolates both antibiotic resistant and susceptible with MIC≥13.56 µg/mL. Incubation of bacteria for 15min in Vitabact eye drops, commercially available form of picloxydine, 434 µg/mL, showed total loss of colony forming units of all tested isolates including Pseudomonas aeruginosa. CONCLUSION: The confirmed efficacy of eye antiseptic picloxydine against conjunctival bacterial isolates and the presence of its commercial form, 0.05% eye drops, convenient for use by patients before and after injection, make this eye antiseptic promising for prophylaxis of IVI-associated infectious complications.

13.
Viruses ; 11(10)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623281

RESUMO

Ultrastructural studies revealing morphological differences between intact and photodynamically inactivated virions can point to inactivation mechanisms and molecular targets. Using influenza as a model system, we show that photodynamic virus inactivation is possible without total virion destruction. Indeed, irradiation with a relatively low concentration of the photosensitizer (octacationic octakis(cholinyl) zinc phthalocyanine) inactivated viral particles (the virus titer was determined in Madin Darby Canine Kidney (MDCK) cells) but did not destroy them. Transmission electron microscopy (TEM) revealed that virion membranes kept structural integrity but lost their surface glycoproteins. Such structures are known as "bald" virions, which were first described as a result of protease treatment. At a higher photosensitizer concentration, the lipid membranes were also destroyed. Therefore, photodynamic inactivation of influenza virus initially results from surface protein removal, followed by complete virion destruction. This study suggests that photodynamic treatment can be used to manufacture "bald" virions for experimental purposes. Photodynamic inactivation is based on the production of reactive oxygen species which attack and destroy biomolecules. Thus, the results of this study can potentially apply to other enveloped viruses and sources of singlet oxygen.


Assuntos
Vírus da Influenza A Subtipo H5N8/efeitos da radiação , Vírus da Influenza A Subtipo H5N8/ultraestrutura , Fármacos Fotossensibilizantes/farmacologia , Vírion/ultraestrutura , Inativação de Vírus/efeitos da radiação , Animais , Cães , Glicoproteínas , Células Madin Darby de Rim Canino , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Proteínas da Matriz Viral/ultraestrutura , Vírion/efeitos da radiação
14.
Anal Biochem ; 587: 113445, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31542342

RESUMO

Lipopolysaccharides (LPS) are the Gram-negative bacteria cell wall components capable to induce the system inflammatory response even at picomolar concentrations. LPS detection at these concentrations is necessary to develop new sorbents for the efficient purification of the biological fluids. LAL-test widely used for LPS concentration estimation is based on the LPS biological activity measurement and thus may depend on the LPS concentration in a non-linear way. Here we propose a new explicit method for the LPS concentration measurement based on fluorescently labeled LPS and direct photon counting and develop the new protocol for LPS adsorption efficiency measurement. Following the suggested protocol in the experiments on novel sorbents, we demonstrate that LPS adsorption at small biologically relevant concentrations is non-Langmuir.


Assuntos
Lipopolissacarídeos/análise , Adsorção , Estrutura Molecular
15.
J Phys Chem B ; 122(14): 3711-3722, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29553736

RESUMO

Phthalocyanines are aromatic macrocyclic compounds, which are structurally related to porphyrins. In clinical practice, phthalocyanines are used in fluorescence imaging and photodynamic therapy of cancer and noncancer lesions. Certain forms of the substituted polycationic metallophthalocyanines have been previously shown to be active in photodynamic inactivation of both Gram-negative and Gram-positive bacteria; one of them is zinc octakis(cholinyl)phthalocyanine (ZnPcChol8+). However, the molecular details of how these compounds translocate across bacterial membranes still remain unclear. In the present work, we have developed a coarse-grained (CG) molecular model of ZnPcChol8+ within the framework of the popular MARTINI CG force field. The obtained model was used to probe the solvation behavior of phthalocyanine molecules, which agreed with experimental results. Subsequently, it was used to investigate the molecular details of interactions between phthalocyanines and membranes of various compositions. The results demonstrate that ZnPcChol8+ has high affinity to both the inner and the outer model membranes of Gram-negative bacteria, although this species does not show noticeable affinity to the 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphatidylcholine membrane. Furthermore, we found out that the process of ZnPcChol8+ penetration toward the center of the outer bacterial membrane is energetically favorable and leads to its overall disturbance and formation of the aqueous pore. Such intramembrane localization of ZnPcChol8+ suggests their twofold cytotoxic effect on bacterial cells: (1) via induction of lipid peroxidation by enhanced production of reactive oxygen species (i.e., photodynamic toxicity); (2) via rendering the bacterial membrane more permeable for additional Pc molecules as well as other compounds. We also found that the kinetics of penetration depends on the presence of phospholipid defects in the lipopolysaccharide leaflet of the outer membrane and the type of counterions, which stabilize it. Thus, the results of our simulations provide a detailed molecular view of ZnPcChol8+ "self-promoted uptake", the pathway previously proposed for some small molecules crossing the outer bacterial membrane.

16.
Chemphyschem ; 17(18): 2839-53, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27304860

RESUMO

The O-antigen is the most variable and highly immunogenic part of the lipopolysaccharide molecule that covers the surface of Gram-negative bacteria and makes up the first line of cellular defense. To provide insight into the details of the O-antigen arrangement on the membrane surface, we simulated its behavior in solution by molecular dynamics. We developed the energetically favorable O-antigen conformation by analyzing free-energy distributions for its disaccharide fragments. Starting from this conformation, we simulated the behavior of the O-antigen chain on long timescales. Depending on the force field and temperature, the single molecule can undergo reversible or irreversible coil-to-globule transitions. The mechanism of these transitions is related either to the rotation of the carbohydrate residues around O-glycosidic bonds or to flips of the pyranose rings. We found that the presence of rhamnose in the O-antigen chain crucially increases its conformational mobility.


Assuntos
Lipopolissacarídeos/química , Simulação de Dinâmica Molecular , Configuração de Carboidratos , Salmonella typhimurium/química , Soluções , Propriedades de Superfície , Termodinâmica
17.
PLoS One ; 10(11): e0141990, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26535905

RESUMO

Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.


Assuntos
Anti-Infecciosos/farmacologia , Membrana Celular/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Anti-Infecciosos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Clorofilídeos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...